Segregation of glycosylphosphatidylinositol biosynthetic reactions in a subcompartment of the endoplasmic reticulum.

نویسندگان

  • J Vidugiriene
  • D K Sharma
  • T K Smith
  • N A Baumann
  • A K Menon
چکیده

Glycosylphosphatidylinositols (GPIs) are synthesized in the endoplasmic reticulum (ER) via the sequential addition of monosaccharides, fatty acid, and phosphoethanolamine(s) to phosphatidylinositol (PI). While attempting to establish a mammalian cell-free system for GPI biosynthesis, we found that the assembly of mannosylated GPI species was impaired when purified ER preparations were substituted for unfractionated cell lysates as the enzyme source. To explore this problem we analyzed the distribution of the various GPI biosynthetic reactions in subcellular fractions prepared from homogenates of mammalian cells. The results indicate the following: (i) the initial reaction of GPI assembly, i.e. the transfer of GlcNAc to PI to form GlcNAc-PI, is uniformly distributed in the ER; (ii) the second step of the pathway, i.e. de-N-acetylation of GlcNAc-PI to yield GlcN-PI, is largely confined to a subcompartment of the ER that appears to be associated with mitochondria; (iii) the mitochondria-associated ER subcompartment is enriched in enzymatic activities involved in the conversion of GlcN-PI to H5 (a singly mannosylated GPI structure containing one phosphoethanolamine side chain; and (iv) the mitochondria-associated ER subcompartment, unlike bulk ER, is capable of the de novo synthesis of H5 from UDP-GlcNAc and PI. The confinement of these GPI biosynthetic reactions to a domain of the ER provides another example of the compositional and functional heterogeneity of the ER. The implications of these findings for GPI assembly are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes

Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...

متن کامل

A molecular study on the endoplasmic reticulum potassium channels in hepatocytes

Introduction: It has recently been suggested that the KATP channel subunits Kir6.x and BKCa channels exist in the endoplasmic reticulum of cardiomyocytes and neurons. Our previous studies showed the electrophysiological behavior of cation channels in the rough endoplasmic reticulum (RER) of rat hepatocytes. Therefore, we hypothesized that KATP channels and Ca2+-activated potassium channels m...

متن کامل

Endoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling

Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...

متن کامل

Biosynthesis of glycosylphosphatidylinositol is essential to the survival of the protozoan parasite Toxoplasma gondii.

The PIGA gene from Toxoplasma gondii has been cloned and characterized. Like mammalian PIGA, the transmembrane and C-terminal domains are sufficient to direct localization to the parasite endoplasmic reticulum. A functional copy of PIGA is required for tachyzoite viability, demonstrating that glycosylphosphatidylinositol biosynthesis is an essential process in T. gondii.

متن کامل

Cytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes

Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 21  شماره 

صفحات  -

تاریخ انتشار 1999